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Abstract
We construct a new number-difference and operational phase entangled state
by operating the Noh–Fougères–Mandel (NFM) phase operator on the two-
mode twin-photon state. Its Schmidt decomposition is derived by virtue of
the previously constructed Einstein–Podolsky–Rosen eigenstate. We reach the
conclusion that the NFM phase operator is essentially an entangling operator,
based on which a new type of number-difference and operational phase squeezed
state can be introduced.

PACS numbers: 0365B, 4250D

1. Introduction

Recently entangled states have been applied to discussing quantum computation, quantum
teleportation, quantum cryptography and quantum superdense coding [1–3]. In an entangled
quantum state, a measurement performed on one part of the system provides information on
the remaining part, as first pointed out by Einstein, Podolsky and Rosen (EPR) [4] in their
famous paper arguing the incompleteness of quantum mechanics. EPR introduced the EPR
wavefunction, the common eigenfunction of two particles’ relative position X1 − X2 (with
centre of mass coordinate x0) and their total momentum P1 + P2 (with eigenvalue p0 = 0)

ψ(x1, p1;x2, p2) = δ(x1 − x2 + x0)δ(p1 + p2) (1)

which describes a sharply correlated two-particle system. For example, if one measures the
momentum of particle 1 and finds p1 = k, then the outcome of a subsequent measurement
of momentum on particle 2 is p2 = −k with certainty. Thus there is a mysterious nonlocal
entanglement between separated quantum objects. The EPR argument has stimulated many
discussions on the nonlocality and entanglememt inherent in quantum mechanics. Remarkably,
the simultaneous eigenstate |η〉 of commuting operators (X1 −X2, P1 + P2) in two-mode Fock
space can be explicitly constructed [5]: it is

|ζ 〉 = exp[− 1
2 |ζ |2 + ζa

†
1 − ζ ∗a

†
2 + a

†
2a

†
1]|00〉 ζ = 1√

2
(ζ1 + iζ2). (2)
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On the other hand, the common eigenvector of (X1 + X2, P1 − P2) is

|η〉 = exp[− 1
2 |η|2 + ηa

†
1 + η∗a

†
2 − a

†
2a

†
1]|00〉 (3)

where η = 1√
2
(η1 + iη2) is a complex number, |00〉 is the two-mode vacuum state and (ai, a

†
i ),

i = 1, 2, are two-mode Bose annihilation and creation operators in Fock space related to
(Xi, Pi) by

Xi = 1√
2

(ai + a
†
i ) Pi = 1√

2i
(ai − a

†
i ). (4)

The |η〉 state obeys the eigenvector equations

(a1 + a
†
2)|η〉 = η|η〉 (a2 + a

†
1)|η〉 = η∗|η〉. (5)

It then follows from (4) and (5) that

(X1 + X2)|η〉 = η1|η〉 (P1 − P2)|η〉 = η2|η〉. (6)

As |η〉 is qualified to make up a new quantum mechanical representation, we name it the
entangled state representation with a continuous variable, not only because |η〉 satisfies the
completeness relation [5]∫

d2η

π
|η〉〈η| = 1 d2η ≡ 1

2 dη1 dη2 (7)

and possesses the orthonormal property

〈η′|η〉 = πδ(η − η′)δ(η∗ − η′∗) (8)

but also because the two-mode squeezing operator has its natural representation in the 〈η|
representation [6]

µ

∫
d2η

π
|ηµ〉〈η| = exp[f (a

†
1a

†
2 − a1a2)] µ = exp f (9)

and the two-mode squeezed state itself is an entangled state which entangles the idler mode
and signal mode as an outcome of a parametric-down conversion process [7]. In [8] the basic
ingredient of the |η〉 state about the coordinate-momentum entanglement is demonstrated
through its Schmidt decomposition process [9]; i.e., we perform the following Fourier
integration:∫ ∞

−∞

dη2

2π

∣∣∣∣η = 1√
2

(η1 + iη2)

〉
e−iuη2

= π− 1
2 exp

[
−1

4
η2

1−u2 +
√

2
(
u +

η1

2

)
a

†
1 +

√
2

(η1

2
−u

)
a

†
2−

a
†2
1 + a

†2
2

2

]
|00〉

=
∣∣∣u +

η1

2

〉
1
⊗

∣∣∣η1

2
− u

〉
2

(10)

where

|u〉i = π− 1
4 exp

[
−1

2
u2 +

√
2ua

†
i +

a
−†2
i

2

]
|0〉i (11)

is the coordinate eigenvector. The inverse Fourier transformation of (10) is

|η〉 = e−iη1η2/2
∫ ∞

−∞
du |u〉1 ⊗ |η1 − u〉2eiuη2 (12)

which indicates that |η〉 is really an entangled state. Therefore we name |η〉 state the EPR
entangled eigenstate.
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Noh, Fougères and Mandel (NFM) proposed an operational quantum phase
description [10], which means that the Hermitian phase operators can be defined as observables
in an operational way. They started by analysing what is usually measured in an experiment
and then introduced operators that represented the measurement, based on the correspondence
with classical optics. As measurement always involves the difference between two phases,
and as an interference or homodyne experiment usually yields the cosine and sine of the
phase difference, they introduced measured operators for the cosine and sine of the phase
difference that corresponded to a particular measurement scheme—the eight-port homodyne
interferometer—by replacing the classical light intensities at the equipment’s four detectors
by number operators, and in the strong-local-oscillator limit the NFM phase operators become
the cosine and sine of the phase difference between two classical electromagnetic fields in the
two input modes. They can therefore serve as a reasonable definition for the sine and cosine of
the phase difference between a coherent state (generated by a local oscillator) and the signal
state. NFM also gave a scheme of how to calculate expectation values of a function of their
phase operators. Later, in [11], Freyberger et al further showed that in the limit of a strong
local oscillator, the NFM description contains an essential two-mode basis which leads to the
simultaneously measurable operator pair. It also provides the NFM operational phase operator
in the following form [12]:√√√√a1 + a

†
2

a
†
1 + a2

≡ ei�

√√√√a
†
1 + a2

a1 + a
†
2

≡ e−i� cos � = (ei� + e−i�)/2 (13)

with a natural representation because from (5) and (13) we see that in the 〈η| representation
ei� behaves as [12]

ei� =
∫

d2η

π
eiϕ|η〉〈η| eiϕ =

(
η

η∗

)1
2

(14)

manifestly exhibiting its phase behaviour. Note that [a1 + a
†
2, a

†
1 + a2] = 0, so they can reside

in the same square root. ei� is a unitary operator. By introducing the two-mode photon
number-difference operator D ≡ a†a − b†b, it has been shown by Fan and Xiao [13] that

[ei�, D] = ei� [e−i�, D] = −e−i�. (15)

Therefore, the number-difference operator and NFM operational phase operator ei� can be
regarded as a pair of conjugate operators. This thus challenges us with the following question:
can we use the NFM operational phase operator to construct a new kind of entangled state
which implicitly involves number-difference and operational phase entanglement? Noting
that the two-mode squeezed vacuum state (an entangled state) is

exp[f (a
†
1a

†
2 − a1a2)]|0, 0〉 = (cosh f )−1 exp[a†

1a
†
2 tanh f ]|0, 0〉

= (cosh f )−1
∑
n=0

tanhn f |n, n〉 (16)

where |n, n〉 = (a
†
1a

†
2)n/n!|0, 0〉 is a twin-photon state, we are naturally led to consider

operating with the NFM phase operator on the twin-photon state.

2. Construction of number-difference and operational phase entangled state and its
Schmidt decomposition

We construct a new entangled state by operating

(ei�)q |m, m〉 ≡ ‖q, m〉 (17)
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where q is an integer, which could be negative. Because [D, (a1 + a
†
2)(a

†
1 + a2)] = 0, one has

[D, eiq�] = −qeiq� [D, e−i�] = e−i�; (18)

this state ‖q, m〉 is the eigenstate of the two-mode number-difference operator,

D‖q, m〉 = Deiq�|m, m〉 = [D, eiq�]|m, m〉 = −q‖q, m〉. (19)

By introducing the two-variable Hermite polynomial

Hm,n(η, η∗) =
min(m,n)∑

l=0

m!n!

l!(m − l)!(n − l)!
(−1)lηm−lη∗(n−l) = Hm,n(r, r)ei(m−n)θ (20)

and its generating function [5, 14]

exp[−t t ′ + ηt + η∗t ′] =
∞∑

m,n=0

tmt ′n

m!n!
Hm,n(η, η∗) (21)

|η〉 can be expressed in two-mode Fock space as

|η〉 =
∞∑

m,n=0

e− 1
2 |η|2 1√

m!n!
Hm,n(η, η∗)|m〉1|n〉2. (22)

The explicit form of ‖q, m〉 in two-mode Fock space can be deduced as follows. Using
equations (14) and (22) we see

ei�q |m〉1|m〉2 =
∫

d2η

π
eiqϕ|η〉〈η|m〉1|m〉2

=
∞∑

m′,n′=0

∫ 2π

0

dϕ

2π
ei(m′−n′+q)ϕ

∫ ∞

0
d(r2)e−r2 Hm′,n′(r, r)Hm,m(r, r)√

m′!n′!m!
|m′〉1|n′〉2.

(23)

Then according to the definition of the associated Laguerre polynomial L
µ
n (x) =∑n

k=0

(
n+µ

n−k

)
(−x)k

k! [14] and equation (20), it is not difficult to see that

Hm′,n′(r, r) = p′!(−1)p′
rl′Ll′

p′(r
2) Hm,m(r, r) = (−1)mm!L0

m(r2) η = reiϕ (24)

where

p′ = min(m′, n′) l′ = |m′ − n′|. (25)

Therefore, using the integration formula [14]∫ ∞

0
dx e−xxλLµ

n (x)L
µ′
n′ (x) = (−1)n+n′

#(λ + 1)

min(n,n′)∑
k=0

(
λ − µ

n − k

)(
λ − µ′

n′ − k

)(
λ + k

k

)
(26)

where
(

α

β

) ≡ α(α−1)···(α−β+1)

β! and #(x) is the gamma function, and the relation between the
Laguerre polynomial and the two-variable Hermite polynomial (24), we obtain∫ ∞

0
d(r2) e−r2 Hm′,n′(r, r)Hm,m(r, r)√

m′!n′!m!
= (−1)p′+m p′!√

m′!n′!

∫ ∞

0
dx e−xx

l′
2 Ll′

p′(x)L0
m(x)

= p′!#( l′
2 + 1)√

m′!n′!

min(p′,m)∑
k=0

( − l′
2

p′ − k

)( l′
2

m − k

)( l′
2 + k

k

)
. (27)

Inserting (27) into (23) leads to

‖q, m〉 =
∞∑

m′,n′=0

min(p′,m)∑
k=0

δm′,n′−q

p′!#( l′
2 + 1)√

m′!n′!

( − l′
2

p′ − k

)( l′
2

m − k

)( l′
2 + k

k

)
|m′〉1|n′〉2. (28)
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Thus for q � 0 we obtain the explicit expansion form of eiq�|m〉1|m〉2 in two-mode Fock space

‖q, m〉 = eiq�|m〉1|m〉2 = #
(q

2
+ 1

)

×
∞∑

m′=0

min(m′,m)∑
k=0

√
m′!

(m′ + q)!

( − q

2

m′ − k

)( q

2

m − k

)( q

2 + k

k

)
|m′〉1|m′ + q〉2. (29)

Equation (29) reveals an interesting property of the phase operator ei�, i.e. eiq� acting on a
twin-photon state |m〉1|m〉2 ≡ |m, m〉 yields the superposition of an infinite number of two-
mode Fock states, each state’s idler-mode photon number being larger than its signal mode
by q. This is just the Schmidt decomposition of ‖q, m〉 which demonstrates its entanglement
property between the two modes. For example, when m = 0, q = 1, we have

ei�|0〉1|0〉2 = #

(
3

2

) ∞∑
m′=0

1√
(m′ + 1)

(− 1
2

m′

)
|m′〉1|m′ + 1〉2. (30)

It then follows that

2〈0|1〈1|R|0〉1|0〉2 = #( 3
2 ). (31)

It is not difficult to prove that the ‖q, m〉 state set spans a complete and orthogonal set, i.e.
∞∑

q=−∞

∞∑
n=0

‖q, m〉〈q, m‖ = 1 (32)

〈q ′, m′||q, m〉 = δq,q ′δm,m′ (33)

which coincides with the unitarity of the NFM phase operator.

3. Application of ‖q, m〉 in constructing the number-difference-operational phase
squeezed state

Due to (15), we have

ei�De−i� = D + 1 [ei�D, De−i�] = 2D + 1 [ei�D, D] = Dei�; (34)

hereafter for convenience we adopt the notation K− ≡ ei�D, K+ ≡ De−i� and K0 ≡ D + 1
2 .

Equation (34) indicates that K−, K+ and K0 constitute an SU(1, 1) Lie algebra,

[K−, K+] = 2K0 [K0, K±] = ±K±. (35)

The Casimir operator is

C = K2
0 − 1

2 (K+K− + K−K+) = − 1
4 . (36)

The twin-photon state |l, l〉 is a state annihilated by K−, K−|l, l〉 = 0. According to the
procedures of constructing coherent states associated with Lie algebra [15], the Casimir
operator acting on |l, l〉 should satisfy

C|l, l〉 = − 1
4 |l, l〉 = k(k − 1)|l, l〉 (37)

which indicates that the Bargmann index is k = 1
2 , K0|l, l〉 = 1

2 |l, l〉, and the twin-photon state
|l, l〉 is the minimum-value state. We now introduce the unitary operator

U = exp[ζK+ − ζ ∗K−)] (38)

and construct a new squeezed-like state as

U |l, l〉 = exp[ζK+ − ζ ∗K−)]|l, l〉 (39)
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where the complex parameter ζ = geiθ , (g � 0). Since K−, K+ and K0 obey the SU(1, 1)

Lie algebra, U is disentangled as

U = exp[K+eiθ tanh g] exp[−2K0 ln cosh g] exp[−e−iθ K− tanh g]. (40)

Thus

U |l, l〉 = (cosh g)−1 exp[K+eiθ tanh g]|l, l〉 = (cosh g)−1
∞∑

n=0

1

n!
(K+eiθ tanh g)n|l, l〉. (41)

It follows from equations (17) and (18) that

De−in�|l, l〉 = ne−in�|l, l〉 = n‖ − n, l〉 (42)

therefore (K+)n|l, l〉 = (De−i�)n|l, l〉 = n!e−in�|l, l〉 = n!‖ − n, l〉; this substituted into
equation (41) gives

U |l, l〉 = (cosh g)−1
∞∑

n=0

(eiθ tanh g)ne−i�n|l, l〉 = (cosh g)−1
∞∑

n=0

(eiθ tanh g)n‖ − n, l〉 (43)

which in form is very like the expression of the two-mode squeezed vacuum state in two-
mode Fock space (16). This is not a coincidence, since they are both the Perelomov SU(1, 1)

coherent state [15]. Here ‖ − n, l〉 is the new entangled state whose entanglement originates
from the entangled operator—the NFM phase operator. Up to now, we have expanded U |l, l〉
in the entangled state space spanned by ‖ − n, l〉. The probability of U |l, l〉 occupancy in
‖ − n, l〉 is

|〈−n, l‖U |l, l〉|2 = (cosh g)−2 tanh2n g = (1 − x)xn x = tanh2 g (44)

which is a geometric distribution.

4. Discussion

In the above discussions we have provided a new entangled state ‖q, m〉 and its corresponding
squeezed state (43). (Note that the two-mode squeezed state (16) is approximately a quadrature
EPR state [8] and can be used for teleportation.) In a very recent paper by Milburn and
Braunstein [16], the teleportation using number and phase measurements is discussed, where
the target state |ψ〉T, which is going to be sent by Alice to Bob, is expanded in the photon
number basis as

|ψ〉T =
∞∑

m=0

cm|m〉T (45)

and the input state to the receiver and sender is

|ψ〉in = (1 − λ2)1/2
∞∑

n,m=0

λncm|m〉T ⊗ |n〉Alice ⊗ |n〉Bob. (46)

To facilitate the description of the joint measurements that need to be made on T and A at the
receiver, they introduced the eigenstates |〉A,T of the number-difference operator NT − NA for
modes T and A. Now our new state ‖q, m〉A,T just fits this demand, since it is an eigenstate of
the number-difference operator. Or one can use our new entangled state as a EPR source for
Alice and Bob to share, as NB − NA is definite. For further detailed theoretical analysis for
teleportation using number and phase measurements or using a squeezed state one may refer
to [16].
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5. Conclusion

In this paper we have demonstrated that NFM phase operator (a unitary operator) plays the role
of entanglement between the two photon modes in its special way and is thus an entangling
operator. Based on this, the new number-difference phase squeezed state can be constructed
on the solid foundation of SU(1, 1) Lie algebra, which also manifestly exhibits entanglement.
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